Do firms in incubation innovate, too? - Evidence from Portugal

João P. C. Marques*

Department of Economics, Management and Industrial Engineering, Research Unit on Governance, Competitiveness, and Public Policies, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
E-mail: jmarques@iscac.pt

* Corresponding author

João P. C. Marques obtained his Ph.D. in Industrial Management from the University of Aveiro – Portugal (2005). His master’s degree is in Management, from the Lisbon School of Economics and Management – Technical University (ISEG) (1997). He has been a lecturer at the Polytechnic Institute of Coimbra - Portugal, since 1990, where he coordinates the M.Sc. course in Business Management. He has been a researcher with the Research Unit on Governance, Competitiveness, and Public Policies – University of Aveiro since 2007. He has published more than 20 scientific papers and 2 books. His main interests are in innovation management, strategy management, entrepreneurship and business incubators.

Abstract: This article examines innovation in micro- and small businesses in incubation in Portugal. The research set out to identify patterns of innovative activity. A conceptual study was developed, based on the literature and empirical studies, to help understanding of the factors determining innovation in small businesses in incubation facilities. Two conclusions can be drawn from the findings. On the one hand, businesses in incubation units see innovation as an essential, continuing activity with interrelated dimensions. These firms tend to introduce new products, innovate in processes and implement changes in the organisation and exploration of new markets. On the other hand the research showed that some areas of innovation depend on the type of origin of the firm, and its size.

Keywords: determinants of innovation; small firms; business incubators; sustainability; Portugal

Copyright of the paper resides with the authors. Submission of a paper grants permission to the 9th Triple Helix Conference Scientific and Organising Committees to include it in the conference material and to place it on relevant websites.
1 Introduction

Over recent decades, the generation of micro- and small businesses has been regarded as a critical factor in the industrial restructuring required by the disappearance of traditional firms and industries, and in the local creation of jobs and wealth. The awareness that entrepreneurship and innovation are key factors throughout this process is spreading and becoming increasingly widely accepted, by national governments, companies and academics.

This dynamic has led to the birth in Portugal, and in many other countries, of many facilities to support entrepreneurship. Business incubators are among these facilities. These new organisational units are sponsored by universities, science and technology parks, business groups and local and regional governments. They offer special conditions to support entrepreneurs who want to overcome obstacles and start their own business. Such innovation is therefore intrinsically linked to the business incubation movement worldwide, providing favourable environments for economic development (Aerts et al., 2007; Marques et al., 2010). This study understands the concept of business incubator as all the facilities needed to provide special conditions to help start-up firms in their earliest stages, at low cost OECD (1997).

The purpose of this research was to explore some internal characteristics of firms in incubation facilities and see to what extent they affect innovation. Four determinants of innovation were tested, using data gathered from a survey: firm’s origin; economic sector; firm’s size, and R&D carried out. Several studies have been carried out in these areas but they and the results of the empirical tests are often contradictory and inconclusive. One of the main reasons for the apparent inconsistencies in the literature is that the theories presented and the empirical tests often attempt to establish general patterns, whereas in fact firms tend to follow specific patterns of innovation specific to a particular sector (Malerba and Orsenigo, 1995; Tether, 2002).

The research was based on a study of micro- and small businesses in incubation facilities. There were three main reasons why it was decided to look at Portuguese firms based in incubators. First, business incubation has been found to greatly favour the creation of new firms and the promotion of enterprise development by governments, universities and business groups (Carayannis and Zedwitz, 2005; Hackett and Dilts, 2004). Second, micro- and small enterprises are held to be essential for economic development and are an integral part of all market economies (Hoffman et al., 1998; Rothwell and Dodgson, 2001). There is evidence that micro- and small businesses in incubation are particularly important in the information and communication technology (ICT) and biotechnology (Rothearmel and Thursby, 2005). Third, it has been suggested that in medium-sized countries business incubators act as a catalyst for economic development, the creation of wealth and jobs (Sofouli and Vonortas, 2007). They are seen as a route for regional and local economies to achieve sustainable economic growth, especially in lower-growth regions that tend to drive new investment (Laranja, 2009).
This article is organised as follows. Section 2 explains the conceptual structure and presents a literature review related to the concept of innovation and its determinants. Section 3 explains the approach used. The results of the survey are presented and discussed in section 4, and the last sections states the conclusions and explains the implications for management and suggests areas for future research.

2 Conceptual structure

The concept of innovation

Although innovation has been thoroughly studied there is no way of measuring the innovation that has been generally accepted. Some research is based on R&D expenditure and on information about patents (Breschi, 1999; Malerba and Orsenigo, 1995), and other work relies on measurements derived from detailed surveys of companies (Avermaete et al., 2003). Innovation is a very broad concept and so various classifications have been developed and used in the literature (Abernathy and Clark, 1985; Cumming, 1998; Johannessen et al., 2001). Most researchers have focused on technology-related innovation, such as the introduction of products that need radical changes in the production process. The concept of innovation, however, can be seen as extending beyond the drastic innovation of technology-based products. It can be taken as something that brings improvements to products and processes, changes to organisational structures and efforts to explore new markets. This idea is reflected by Lundvall (1992, p. 8), when he refers to it as an

"...on-going processes of learning, searching and exploring, which results in new products, new techniques, new forms of organization and new markets".

Innovation is often the outcome of simultaneous changes in different areas, where interrelations stand out (Caraça et al., 2009), as explained next.

Product innovation can be a good, service or idea that is viewed by someone as being new (Lundvall, 1992; Caraça et al., 2009). One person or organisation can thus regard a product as an innovation while another does not (Johannessen et al., 2001). Product innovation can be prompted by changes in a firm’s organisational structure. For example, when the quality of products is improved by a more efficient organisation of internal controls. Furthermore, new products can appear when new market segments are explored. For instance, new market segments have been introduced in recent decades by the ICT industries and involved items from personal computers to GPS systems (Tidd et al., 1997). But product innovation is basically associated with change in processes.

Innovation in processes includes adapting existing production lines, installing completely new infrastructure, and implementing new technologies. On the whole, process innovation enables the creation of new products. But process
innovation may be necessary as part of a company’s reorganisation or in order to explore new markets (Jenssen and Aasheim, 2010).

Organisational innovation concerns changes in relations of authority, in organisational structure, in job allocation, in remuneration systems, in communication systems and other aspects of formal interaction between the people in the organisation (Slappendel, 1996). Although there are not very many studies on organisational innovation it has been gaining importance in all industrial sectors. We can look at the success of standard ISO 9000, for example, which establishes rules for making processes transparent, documented, reproducible and controlled (Tidd et al., 1997).

The last innovation domain concerns market innovation, which involves exploring new territorial markets and penetrating new market segments in the context of the current strategy. As an example, recent development in the biotechnology sector show that market innovation is strongly interlinked with product and organisational innovation, and less strongly to process innovation (Khilji et al., 2006).

Innovation determinants

A number of factors that determine innovation have been identified, ranging from microeconomics characteristics and links between firms to macroeconomic performance (Becheikh et al., 2006; Cooke et al., 1997; Nooteboom, 1999; Palmberg, 2006; Shefer and Frenkel, 2005). In this article the impact of four variables is analysed:

- Firm origin
- Economic sector
- Firm size
- R&D activities

The literature on the relations between the origin of the company and innovation is quite limited. Studies in this area include Schumpeter (1934), who is regarded as the founder of the theory of dynamic innovation (Malerba and Orsenigo, 1995). Schumpeter (1934) examined the industrial structure of Europe at the end of the 19th century, which was then dominated by small enterprises. He found that entry tended to be easy for firms that were using new technologies and stressed the role of new firms as drivers of innovation. New entrepreneurs started out with fresh ideas, fresh products and fresh processes. Here, current production methods, organisation and distribution are interrupted and the quasi-rents associated with previous innovations are wiped out. This dynamic is known as creative destruction or Schumpeter’s Mark I innovation model (1934). Other authors have studied the performance of spin-off firms in a scattered way, examining innovative activity in their relations with universities and R&D laboratories (Carayannis et al., 1998; Dahlstrand, 1997) and underscoring the high-tech nature of the technology used. But, in an incubation environment, there are very few studies that assess the impact of the origin of a firm on its innovation.
The relations between the sector of economic activity and innovation have been studied more often. The literature mentions in general that the high-tech sectors are more inclined to post higher rates of innovation than the more traditional ones (Acs and Audretsch, 1988; Frenkel et al, 2001; Hoffman et al, 1998; Shefer and Frenkel, 2005). Attention is drawn to the existence of differing innovation patterns between sectors, which is why inter-sectoral studies have led to apparent contradictions in the results. So this study looks at the kinds of innovation in firms in incubation facilities by dividing the sample into three groups according to their technological character. The first and second groups include mostly high-tech sectors, like 1- ICT and 2- Biotechnology and health. The third group contains mostly low-tech sectors, designated 3- Other sectors. This classification generally reflects the sectoral pattern of Portuguese incubators and, therefore, of the firms in incubation units.

The study of the relationship between the firm’s size and innovation also goes back to Schumpeter (1942). He believed that large firms are more likely to innovate than small ones. With knowledge built up in specific technological areas, with greater expertise in R&D projects, and in production and distribution on a large scale, plus access to resources, large companies set up barriers to the entry of new entrepreneurs (Greve, 2003). This is Schumpeter’s Mark II innovation model.

Following Schumpeter the relation between firm size and innovation has been studied exhaustively (Bertschek and Entorf, 1996; Breschi, 1999; Greve, 2003; Malerba and Orsenigo, 1995; Shefer and Frenkel, 2005). But more than half a century after his work the discussion about this issue goes on. These empirical studies came to apparently contradictory conclusions. This is basically due to the use of different measures of innovation (Grunert et al, 1997; Shefer and Frenkel, 2005) and of different sampling methods, in which a lot of studies collect data in industries to try and arrive at a general conclusion instead of discerning specific innovation patterns of each industry. In addition, the size distribution of firms in the samples differs.

Finally, many studies have been carried out on the relation between R&D activities and innovation. Among them, Hall and Bagch-Sem (2002), Parthasarthy and Hammond (2002) and Shefer and Frenkel (2005) report that engaging in R&D activities is an important input into the innovation process but stress that there are some limitations since not all innovations come from R&D. Furthermore, it should be noted those studies tend to favour large companies to the detriment of small ones.

Although it is clear that the internal characteristics of firms, such as their origin, sector of activity, size and R&D carried out, have an impact on their innovative behaviour, studies have often focused on the environment in which innovation occurs. This is where business incubators emerge as particularly favourable environments from the technological, institutional and regional point of view (Cooke et al, 1997). From this standpoint, governments, universities and R&D laboratories, business associations and networks of other kinds, all contribute to companies’ innovative behaviour (Breschi, 1999; Laranja, 2005).
3 Methodology

Companies’ innovative activity was initially assessed by means of a survey of firms in the 11 incubator units of Portuguese companies that agreed to take part in the study. The sample of firms in incubation as of 31 December 2008 comprised 158 micro- and small enterprises. It was decided to study 50% of the firms in each incubator by means of a stratified sample, using two strata: Year of incubation of the firm, and Sector of economic activity. The final sample of firms interviewed comprised 79 micro- and small businesses, 38 from the ICT sector, 7 from the biotechnology sector and 34 from other sectors. All the firms in the sample were less than 3 years old.

A pilot interview was conducted in May 2009 and the final one took place between June and September 2009. The managers or owners of the firms were interviewed in person. Each interview lasted about 1 hour. The survey focused on four innovation indicators. The first was product innovation. The entrepreneurs were asked about whether they had introduced any product innovation, defined as a new or substantially modified product, in the last 3 years. The second was process innovation, taken to be the introduction of a new process or substantial improvement of existing ones in the last 3 years. The third was organisational innovation, which was the introduction or major improvement of organisational methods or systems in the last 3 years. The implementation of standard ISO 9000 was of particular interest, since this would imply a radical effort at changing the organisation. The fourth is market innovation, which is defined as entry into new geographic markets or new client segments. These four indicators were treated as areas of analysis and coded zero or one.

In addition to knowing whether any of the four types of innovation relating to product, process, organisation and market was present or not, the questionnaire was designed to gather information that would measure the influence of four variables as determinants of innovation. The first is the firm’s origin, to see if it was a spin-off from a university, a spin-off from another company, a new firm established on individual initiative, an already-existing firm, a subsidiary of another, existing, company or some other situation. The second, economic sector, denotes the activity in accordance with its technological character. The first and second groups included mostly high-tech sectors, e.g.: 1- ICT (communications, computer and electronic hardware and software), 2-Biotechnology and health (medical, health, genetic engineering and molecular biology products and services). The third group contains mostly low-tech sectors, designated 3- Other sectors (energy, consumer products, industrial products and other goods and services). The third variable concerns the size of the company measured in terms of employees (up to 3, from 4 to 10, from 11 to 15, from 16 to 25, from 26 to 50 and more than 50). The last variable measured R&D activities: 1 – none; 2 – full-time R&D, and 3 – part-time R&D.

SPSS was used to process the results. An independent t-test and chi-square test (χ^2) adjusted by the Fisher coefficient for a small number of firms, for 95% significance, were used to find associations. Whenever possible the association was measured using Cramer’s V coefficient.
4 Results

The empirical analysis of the sample is divided into five parts: first, a summary of general findings; second, the results of the analysis of relations between firms' origins and their innovative activity; third, the relations between the sector of activity and types of innovation; the effect of firm size on innovation is analysed in the fourth part. Finally, the effect of R&D as a determinant of innovation is also discussed.

General results

The results of the general analysis highlight the importance of innovation to micro- and small firms based in business incubators. All the 79 said they had introduced at least one of the four kinds of innovation discussed above.

The chart below (Figure 1) shows the research results for the four innovation indicators. In the last three years or since they were based in business incubators, 36 respondents have introduced a product innovation and 21 have implemented a process innovation. 27 firms said they have started procedures to obtain the ISO 9000 certification (organisational innovation). The decision to enter new market segments or create new niches was indicated by 13 firms.

Figure 1 General results of innovation in micro and small firms based in business incubators (n=79).

<table>
<thead>
<tr>
<th>Innovation Type</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Market Innovation</td>
<td>16.5%</td>
</tr>
<tr>
<td>Organizational Innovation</td>
<td>34.2%</td>
</tr>
<tr>
<td>Process Innovation</td>
<td>26.6%</td>
</tr>
<tr>
<td>Product Innovation</td>
<td>45.6%</td>
</tr>
</tbody>
</table>

Source: Personal research on Portuguese firms in incubation in 2009.

The analysis also confirms the interrelations and interdependence between the various domains of innovation (Lundvall, 1992; Caraça et al, 2009), where the development or adoption of a product innovation often involves the adoption of improvements in the processes, in the functioning of the organisation and in market innovations. 41 of the 79 firms said they have innovated in terms of product and process, 34 have developed a product and organisational innovation
and 42 have a product and market innovation. The p values are significant (p<0.001), showing strong interrelations between the innovation domains. In addition 8 firms (10%) have developed all four types of innovation at the same time, with 6 of these firms being in the ICT sector and undertaking R&D on a part-time basis. This shows that high-tech companies tend to engage more in innovative activity, with a chain of interrelations in all the firm’s domains (Caraça et al, 2009).

Firm origin
As in the previous analysis, independent t-test was calculated to ascertain the impact of a firm’s origin on innovation. It was found that the origin does determine process, organisational and market innovation. But an association between the origin of the company and innovation was not confirmed. Table 1 shows that university spin-offs and subsidiaries of already-existing companies are responsible for the associations found. Of the 7 university spin-offs, 57.1% implemented process innovations ($\chi^2=8.017; p=0.042$) and 85.7% implemented some organisational change ($\chi^2=11.359; p=0.006$). Market innovation was found simultaneously in university spin-offs (57.1%) and in the only firm that was a subsidiary of an already-existing company (100%). ($\chi^2=14.646; p=0.002$). Cramer’s V coefficient revealed moderate associations with process and organisational innovation and a relatively strong association with market innovation (V=0.469).

Economic sector of firm
Testing for associations between the economic sector and innovation domains showed that in no instance did the sector of activity determine any kind of innovation to any significant extent. Three conclusions emerge. First, the biotechnology and health firms innovate most in terms of product (71.4%) and least in terms of process (14.3%). Second, the ICT firms innovate less than might be expected in terms of product (50.0%), given their high-tech nature. Third, innovation with respect to new market segments was poor for all sectors of activity, with only 16.1% of the firms in the sample implementing action in this aspect. This could indicate inadequate intervention of the incubator in relation to offering strategy guidance to firms.

Firm size
The size of a firm did not affect process and market innovation. But size was related to product and organisational innovation. The 25 firms with 4 to 10 employees (66.7%), and the 8 with up to 3 employees (25.8%) were found to be associated with product innovation, which was a lower number than expected ($\chi^2=15.812; p=0.001$). But the degree of association is strong (V=0.453), so it may be supposed that the more employees that enterprises in incubation have the higher their rate of product innovation. Table 1 shows that the percentage of firms implementing organisational innovation increases with the number of employees, since the level of significance was much lower than 0.05 where the firms accounting for this association are those with 24 to 50 employees and over 50 employees ($\chi^2=10.74; p=0.018$), with a moderate association (V=0.381).
<table>
<thead>
<tr>
<th>Type of innovation</th>
<th>Product (n=36)</th>
<th>Process (n=21)</th>
<th>Organizational (n=27)</th>
<th>Market (n=13)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>%</td>
<td>n</td>
<td>%</td>
</tr>
<tr>
<td>University spin-off (n=7)</td>
<td>6</td>
<td>85.7</td>
<td>4</td>
<td>57.1</td>
</tr>
<tr>
<td>Company spin-off (n=6)</td>
<td>3</td>
<td>50.0</td>
<td>2</td>
<td>33.3</td>
</tr>
<tr>
<td>New firm (n=63)</td>
<td>25</td>
<td>39.7</td>
<td>13</td>
<td>20.6</td>
</tr>
<tr>
<td>Already-existing firm (n=2)</td>
<td>1</td>
<td>50.0</td>
<td>1</td>
<td>50.0</td>
</tr>
<tr>
<td>Subsid. or existing firm (n=1)</td>
<td>1</td>
<td>100.</td>
<td>1</td>
<td>100.</td>
</tr>
<tr>
<td>p-value</td>
<td>.087</td>
<td>.042</td>
<td>.006</td>
<td>.002</td>
</tr>
<tr>
<td>Economic sector</td>
<td>ICT (n=38)</td>
<td>19</td>
<td>50.0</td>
<td>10</td>
</tr>
<tr>
<td>Biotechnology & health (n=7)</td>
<td>5</td>
<td>71.4</td>
<td>1</td>
<td>14.3</td>
</tr>
<tr>
<td>Other sectors (n=34)</td>
<td>12</td>
<td>35.3</td>
<td>10</td>
<td>29.4</td>
</tr>
<tr>
<td>p-value</td>
<td>.159</td>
<td>.749</td>
<td>.777</td>
<td>.213</td>
</tr>
<tr>
<td>Size</td>
<td>Up to 3 employees (n=31)</td>
<td>8</td>
<td>25.8</td>
<td>5</td>
</tr>
<tr>
<td>4 to 10 employees (n=39)</td>
<td>25</td>
<td>64.1</td>
<td>15</td>
<td>38.5</td>
</tr>
<tr>
<td>11 to 15 employees (n=4)</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>16 to 25 employees (n=3)</td>
<td>2</td>
<td>66.7</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>26 to 50 employees (n=1)</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>Over 50 employees (n=1)</td>
<td>1</td>
<td>100.</td>
<td>1</td>
<td>100.</td>
</tr>
<tr>
<td>p-value</td>
<td>.001</td>
<td>.065</td>
<td>.018</td>
<td>.082</td>
</tr>
<tr>
<td>R&D activity</td>
<td>No R&D (n=24)</td>
<td>8</td>
<td>33.3</td>
<td>3</td>
</tr>
<tr>
<td>Full-time R&D (n=7)</td>
<td>5</td>
<td>71.4</td>
<td>2</td>
<td>28.6</td>
</tr>
<tr>
<td>Part-time R&D (n=48)</td>
<td>23</td>
<td>47.9</td>
<td>16</td>
<td>33.3</td>
</tr>
<tr>
<td>p-value</td>
<td>.187</td>
<td>.176</td>
<td>.051</td>
<td>.248</td>
</tr>
</tbody>
</table>

Source: Personal research on Portuguese firms in incubation in 2009.

Firm’s R&D

Product, process, organisational and market innovation are independent variables of the R&D activities of firms in incubation. But one interesting result concerns the fact that firms engaging in R&D full-time innovate more at product, organisation and market level than firms whose R&D activity is part-time, leading to the supposition that the importance of R&D to companies’ innovating activity, but showing with a significance higher than 0.05, so they were not considered relevant.
5 Conclusions

This paper has examined the determinants of innovation in micro- and small firms, using a database built up through a survey of 79 enterprises based in Portuguese incubators. The results show the importance of innovation to the great majority of these micro-and small firms. Though largely limited in terms of scale, these firms seem to innovate continuously and on an interrelated basis. The survey shows that all the firms had developed some type of innovation in the last three years, and tended to have done so in more than two areas simultaneously. The incubation environment certainly drove this high level of innovation, which confirms previous studies that found that incubators encourage entrepreneurship and innovation (Hackett and Dilts, 2004).

Of the factors studied, neither the economic sector nor R&D activity determined innovation. The biotechnology sector innovated comparatively more than ICT. Full-time R&D contributed more to product, process and organisational innovation than part-time R&D, which confirms previous studies in non-incubator environments (Shefer and Frenkel, 2005).

Our study shows that firm origin and size significantly influenced innovation. In terms of origin, university spin-off firms determine the level of process, organisational and market innovation, while subsidiaries of existing companies only affect market innovation. The findings do not confirm the widespread view that innovation from spin-off companies is largely based on high-tech product innovation (Carayannis et al., 1998). The incubation environment may make a positive contribution to reversing the situation by helping to encourage product innovation.

Firm size has an influence on product and organisational innovation. Firms with up to 10 employees mostly innovate at product level and those with more than 26 employees essentially innovate at organisational level. But the more employees the greater the implementation of product and organisational innovation, which confirms the findings of other studies (Shefer and Frenkel, 2005). This supports the idea that micro- and small businesses can play an important role in innovation activities in their localities.

Practical implications for management

The literature on innovation in micro- and small enterprises in incubation facilities is fairly scarce. The entrepreneurs involved are usually operating on the basis of their experience, the successes and weaknesses of similar firms and on the support of the incubator when it comes to strategic decisions on innovation at the critical start-up phase. There are two implications for policy.

First, incubators, seen as a tool to facilitate entrepreneurship and innovation and dynamic in terms of adapting to change, are undoubtedly a good medium for stimulating the innovative activity of start-ups in all sectors, and especially firms in high-tech sectors such as ICT and biotechnology and health. This research has shown that firms in incubation innovate in all realms, and that they are interdependent. It further shows that there is a need for an appropriate tool to measure innovation in particularly favourable environments where links to innovating networks are facilitated. Greater focus on these aspects could help to
boost the product innovation rates of university spin-offs. Here, too, attention is
drawn to the part played by incubator managers in helping and giving strategic
guidance to businesses. This could lead to increasing market innovation.

Second, from an economic standpoint, the incentive to innovation provided by
business incubators can be seen as a strategy to stimulate sustainable regional
and national growth. The study also showed that R&D based innovation does not
significantly determine innovative activity. Firms rely heavily on information from
customers, suppliers, the incubator’s management and the university associated
with it as a source of innovation. This is where governments can really help to
strengthen relations between incubating firms, universities and other economic
and social actors, and thereby stimulate innovation.

Future research
The study was based on enterprises in Portuguese incubators without a defined
sectoral orientation. It would be useful to extend the analysis to other European
regions and undertake comparative studies to pinpoint specific regional patterns
of innovation. Such cross-country analyses would also enable conclusions to be
drawn for European innovation policy regarding firms in incubation units.

References
Abernathy, J. and Clark, K. “Mapping the winds of change.” Research Policy, 3,
198: 3-22.
Acs, Z. L. and Audretsch, D.B. “Innovation in large and small firms: an empirical
Aerts, K., MatthysSENS, P., and VandENbempt, K. “Critical role and screening
practices of European business incubators.” Technovation, 27, 2007: 254-
267.
Avermaete, T., Viaene, J., Morgan, J. and Crawford, N. “Determinants of
innovation in small food firms.” European Journal of Innovation Management,
6(1): 7-17.
studies in the manufacturing sector. A systematic review of the literature from
Bertschek, L. and Entorf, H. “On nonparametric estimation of the Schumpeterian
link between innovation and firm size: evidence from Belgium, France and
Breschi, S. “Spatial patterns of innovation: evidence from patent data”, In The
Organisation of Economic Innovation in Europe, edited by A. W.
71-103.
Caraça, J. M. G., Lundvalll, B-A and Mendonça, S. “The changing role of science
in the innovation process: from Queen to Cinderella?”, Technological
Forecasting and social change, 76(6), 2009: 861-867.
Carayannis, E., Rogers, E., Kurihara, K., and Allbritton, M. “High Technology
Spin-Offs from Government R&D Laboratories and Research Universities”.

